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Abstract: Processes involving conversion of mature adult cells into undifferentiated cells have tremendous
therapeutic potential in treating a variety of malignant and non-malignant disorders, including degenerative
diseases. This can be achieved in autologous or allogeneic settings, by replacing either defective cells or
regenerating those that are in deficit through reprogramming more commited cells into stem cells. The concept
behind reprogramming differentiated cells to a stem cell state is to enable the switching of development
towards the required cell lineage that is capable of correcting the underlying cellular dysfunction. The
techniques by which differentiated cells can reverse their development, become pluripotent stem cells and
transdifferentiate to give rise to new tissue or an entire organism are currently under intense investigation.

Examples of reprogramming differentiation in mature adult cells include nuclear reprogramming of more
commited cells using the cytoplasm of empty oocytes obtained from a variety of animal species, or cell surface
contact of differentiated cells through receptor ligand interaction. Such ligands include monoclonal
antibodies, cytokines or synthetic chemical compounds. Despite controversies surrounding such techniques,
the concept behind identification and design/screening of biological or pharmacological compounds to enable
re-switching of cell fate in-vivo or ex-vivo is paramount for current drug therapies to be able to target more
specifically cellular dysfunction at the tissue/organ level. Herein, this review discusses current research in

cellular reprogramming and its potential application in regenerative medicine.
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STEM CELL BASICS

Pluripotent stem cells give rise to tissue comprising a
variety of differentiated cell types that can cure many
haematological disorders [1], transgenic organs for
xenotransplantation or synthesis of beneficial medicines [2]
and an entire organism for the propagation of an elite
livestock [3]. These giant developmental feats are invariably
achieved through multiple rounds of self-renewal,
subsequent commitment and differentiation into a variety of
specific cell lineages [4]. Generally, stem cells have a simple
morphology [5] and, only following asymmetric cell
division one daughter cell can embark on differentiation
while the other remains quiescent [6]. Upon completion of
development, stem cells acquire more specific differentiated
features that allow them to execute more complex functions.
The developmental program of any given stem cell into a
certain specialised cell type, known as ontogeny [7], is
executed in step-wise fashion, which under normal
circumstances exhibits lineage fidelity [8]. During this
program stem cells progressively lose stem cell markers
prior to displaying maturity or specialisation-associated
characteristics [9]. For example, at the genetic and cellular
level, pluripotent stem cell step-wise differentiation into
primitive and definitive erythromyelopoiesis is preceded by
loss of undifferentiated characteristics. This is then followed
by the acquisition of mesodermal-endodermal features that
can generate endothelium, and form organised yolk sac-like
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structures that secondarily generate multipotent primitive
haematopoietic stem progenitor cells, erythroblasts, and
macrophages.

DEFINING POTENCY

The potency of a stem cell is defined by its optional
developmental destiny. For example, more commited stem
cells, such as monopotent [10] or bipotent [11] have limited
developmental potentials and are only capable of executing
one or two developmental programs, respectively. The
monopotent erythroid stem cell for instance, gives rise to
haemoglobin containing enucleated red blood cells, while
epithelial liver progenitors exhibit biliary and hepatocytic
bipotentiality. In other words, these types of stem cells have
determined their developmental destiny that is irreversible to
a pluripotent or an embryonic stem cell fate. In stark
contrast, pluripotent or embryonic stem cells are, more
developmentally versatile born only following fertilization
[12] of an oocyte. These totipotent embryonic stem cells
[13, 14] exhibit complex developmental potentials. This is
achieved through weaving multiple tissue and cell lineages
which get molded into a variety of sophisticated organ
systems that culminate in the creation of a viable and
functional organism [15]. In this sense, apart from
embryonic stem cells, all somatic cells in a mammalian
body are considered relatively more commited. Though more
restricted in development than embryonic stem cells, tissue-
specific adult stem cells are hierarchical [16] in their
developmental decisions. In other words, those most
primitive reconstitute durable and complete tissue such as
the lymphohaematopoietic system in surrogate animal
models while those more commited are short lived and have
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a narrower repopulation potential, one lineage short of
recreating an entire tissue [17].

FURTHER DEFINING POTENCY

The potency of a given somatic cell can also be measured
by the number of times its nucleus can give rise to an
immature or mature viable organism [18]. Nuclear transfer
technology is one way of measuring cell potency. This
involves the transfer of a given cell nucleus into an
enucleated cell such as an oocyte [19]. Briefly, this involves
the mechanical removal of the genetic material of an oocyte
using a micromanipulation technique. Following this
enucleation step, the donor nucleus is introduced into the
oocyte by microinjection or fusion. The transferred nucleus
undergoes disassembly in response to high levels of
maturation promoting factor in the metaphase Il cytoplasm.
Following artificial activation, both by chemical or electrical
treatment of the reconstituted oocyte, nuclear reassembly
occurs and this enables the ultimate reproduction of a viable
embryo. Earlier work on nuclear transfer experiments
involving amphibian and mammals clearly demonstrate that
the cloning efficiency of a nucleus decreases as cells
differentiate. Other means of measuring potency also exist
which involve the ability of a cell, usually an embryonic
stem cell, to give rise to a chimeric animal when injected
into an early blastocyst by contributing to most, if not all,
somatic cell types [20]. In addition, the ability of a given
cell to form teratomas consisting of differentiated derivatives
of all three embryonic germ layers; mesoderm, ectoderm and
endoderm following injection into an immunocompromised
animal host [21] is the “gold standard’ of measuring implicit
pluripotency and the hall mark of embryonic stem cells. In
contrast, measuring potency in tissue specific stem cells
derived from a more discernable tissue such as the bone
marrow, cord or mobilized blood involves the reconstitution
of an entire tissue such as the haematopoietic system [22,
23] in a surrogate irradiated immunodeficient animal model.
In these assays, selectable pressure such as irradiation [24] is
necessary for stem cell engraftment and repopulation.
Furthermore, the durability and extent of adult stem cells to
engraft an animal host, as well as having secondary
repopulation potential upon serial transfer into a second
animal, is another measure of potency [25]. Such stem cells
are considered more potent or primitive and can be found in
minute quantities in the bone marrow, cord blood and fetal
liver.

SOMATIC CELL REPROGRAMMING OR
DEVELOPMENTAL ANARCHY

Interestingly, by definition, embryonic stem cells are
created from the union of two differentiated cells [26], the
egg and sperm that are incapable of totipotency on their
own. In the past century, the notion of pluripotency being
exclusive to embryonic stem cells has been challenged. This
is due to the fact that the nuclei of somatic cells, if given a
chance, can also exhibit pluripotency. This is invariably
achieved by altering the immediate microenvironment of the
nucleus of a more commited cell by introducing it into an
enucleated oocyte. In these experiments, a variety of animal
species were generated from differentiated cells such as gut
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epithelial cell [27], keratinized skin cell [28], erythroid cells
[29] and mammary epithelial cells [30] including lympho-
cytes [31]. Soon after the birth of Dolly the sheep a viable
progeny of a milk producing cell, mice [32], cows [33], goat
[34], pigs [35], rabbits [36] and a cat [37] were generated
from adult donor nuclei. The efficiency of mammalian
nuclear transfer experiments is low and very similar to that
obtained in amphibians. Only less than 1% of all nuclear
transfers from adult or differentiated cells result in apparently
normal offspring [38].

Reprogramming specialisation in more primitive somatic
cells was also extended to tissue-specific or adult stem cells.
These adult stem cells have been noted to exhibit
developmental infidelity or plasticity outside the tissue from
which they were originally derived. For example, neuronal
stem cells appear to convert to blood [39] and vice versa
[40], haematopoietic stem cells into liver [41, 42] and bone
marrow cells into heart [43]. This phenomenon has been
noted to occur in response to remote environmental cues or
selective pressure in-vivo in surrogate animal models. In
addition, bone marrow cells were shown to give rise to
multiple tissue types following culture and expansion [44].
Paradoxically, despite carrying the title ‘stem cells’, the
plasticity of adult stem cells are more intensely debated [45]
when compared to those formed from far more differentiated
cells following nuclear transfer. For example, some would
argue that donor stem cell plasticity and engraftment is due
to fusion with host resident stem cells, albeit in some
instances with the ability to correct a congenital mutation
[46].

Nevertheless, at face value, these findings regarding
developmental infidelity of somatic cells are already
cementing new and bizarre concepts in our current
understanding of developmental biology. For example, three
notions that come to mind: is developmental plasticity
universal to all somatic cells? Relative to which stem cell
type can one assess the potency of a given cell type? If both
are capable of pluripotency then what is the difference
between a differentiated or stem cell state? Alternatively, is
pluripotency an event in space, dictated by the microe-
nvironment in which the cell is positioned in, or artificially
transferable?

These fascinating notions, though for now indeterminate,
already changing the way we perceive somatic cells and even
our very own selves. Regardless of our beliefs or preferences,
nuclear reprogramming technologies though exciting and
beneficial have suddenly posed some conceptually circular
ethical arguments [47]. For example, if all cells are equal in
their potency then all somatic cells, if permitted, have the
potential to give rise to viable organisms. What is all the
fuss then? Does not realising the potentiality of our very
own somatic cell make any one a better judge of the ethics
of stem cell research or therapy? In this regard, may be it is
pertinent not to pass judgment based on scientific grounds
as determined by potency, but rather on more basic humane
and transparent [48] principles. In fact, a stem cell state can
not be measured directly with absolute certainty [49, 50].
Only following development can one determine the potency
of a given cell.

All stem cell assays [51] are not impartial. They do not
measure the absolute stemness state but rather exhibit the
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impact of a set of conditions on a putative stem cell
candidate. For example, prior to defining potency, most of
the assays mentioned above first involve the isolation of
stem cells using toxic chemical [52] dyes, digestive enzymes
[53] and cross-linking of cells using antibody coated
magnetic beads [54]. This is followed subsequently by
exposing the cells to free ligands such as growth factors [55]
and cytokines [56]. Both steps may impact the phenotype of
the starting population and, therefore, purely reflect the
properties of such assays rather than the true identity of the
cells under investigation. Furthermore, we are continually
improving the efficiency of these assays, such as the various
protocols used to Kkick start the process of embryogenesis in
nuclear transfer technology [57]. For example, the type of
recipient cell, source of recipient cell, method of
reconstruction, activation, embryo culture, donor cell type,
and donor and recipient cell cycle stages are all important
factors influencing the efficiency of cloning techniques.
Presumably, this is why we are now unraveling more readily
the phenomenon of somatic cell plasticity in mature adult
cells, in response to improved scientific methods.

May be the actual phenotype of a stem cell or a more
differentiated cell state is not a permanent characteristic. For
example, may be the more or less commited cell state is
defined by a set of impending or extant environmental
conditions which when met tip the balance either towards
hierarchical cell fate determination [58] or indetermination
[59]. This kind of oscillatory developmental tilting may
conversely impact the number of cells that are occupying a
more or less commited cell state by means of shifting
development more towards juvenile or adult ontogeny. This
kind of seesaw-like developmental potential may be the
reason behind the plasticity of adult stem cells and their
subsequent transdetermination [60]. For instance, a variety
of markers have been associated with a variety of stem cell
types, namely CD34 [61], nestin [62] and Oct 4 [63]. But
do we really know the exact distribution of such antigens in
the living tissue of an adult or developing human? After all,
not all haematopoietic stem cells expressing the CD34
marker engraft an animal host [64] or proliferate and
differentiate in vitro in semi solid medium [65]. Furthe-
rmore, OCT-4, an embryonic stem cell marker can be re-
expressed by highly specialised cells such as lymphocytes
[66], while nestin [67] or CD34 [68] antigens are not
exclusive markers of neuronal or haematopoietic progenitor
stem cells, respectively. Furthermore, disregarding the
phenomenon of adult stem cell plasticity on the basis of a
somewhat rare cell fusion event [69] may turn out to be one
of cell biology’s greatest follies. It may turn out that the cell
fusion hypothesis is a way of explaining the very pheno-
menon under investigation. For example, the reversibility of
the differentiated state does occur in response to the
formation of a heterokaryon [70], a form of primitive cellular
abduction which may be a rare transitory physiological phase
in reprogramming the differentiated state. Alternatively, the
rare cell fusion hypothesis may simply reflect an inherent
inadequacy in cell tracking techniques [71] that is
undermining a bona fide phenomenon.

Nonetheless, the ever expanding research into somatic
cell plasticity has made it hard to draw sharp lines to
delineate the difference between pluripotency, lineage
commitment and, therefore, what can potentially constitute
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life sustaining cellular entities. Far more poignant is the
notion that somatic cells of bone marrow origin can act as a
potential source of germ cells that could sustain oocyte
production in adulthood [72].

THE POTENTIAL OF
PLASTICITY

SOMATIC CELL

Nevertheless, the multitude of diseases by which such
technologies can cure or even treat are listless. It was once
believed, and not vice versa, that only stem cells give rise to
specialised cells that, upon terminal differentiation, will
ultimately perish. In the face of dwindling sources of stem
cells in an ageing human body, such a bleak ending of
differentiated cells is the cause of tissue degeneration, organ
failure and eventual demise.

Even more paradoxical is the finding that fully intact
differentiated cells can be reprogrammed to become
pluripotent stem cells via mere cell surface contact. This
means that we already have at hand less strenuous means to
mend defaced tissue, as well as remedy organ dysfunctions,
by unleashing dormant developmental programs through
contacting differentiated cells. The process involves
harnessing of dormant, more primitive developmental
programs whilst silencing those associated with its
specialisation, by mere cell surface receptor ligation thus
rendering them pluripotent. This involves contacting cells
with agents ranging from monoclonal antibody [73],
cytokine [74] cellular extract [75] and even small synthetic
chemical compounds [76]. From my research, into somatic
cell reprogramming | have found that fully intact
differentiated cells undergo reprogramming in response to
ligation, cross-linking or contacting ubiquitous sites on cell
surface receptors. This process, which | have termed
retrodifferentiation [73, 77-78] or rather reprogramming by
cell surface contact, can be achieved in very short periods of
time and is far more pronounced in response to ligation with
unconjugated monoclonal antibodies. Interestingly, one such
agent which | have noted to induce profound and rapid
plasticity in differentiated cells such as white blood cells is a
monoclonal antibody that binds monomorphic sites on the
MHC class Il beta-chain, clone CR3/43. In these experi-
ments, and following exposure to a variety of well
established cell culture conditions, the conversion of a more
commited heterogeneous cell population such as white blood
cells into undifferentiated cells with far more flexible
developmental potentials is noted. The exact mechanism
behind rewinding the ontogeny of a fully developed cell to a
stem cell stage remains unclear. However, the mechanism
always involves loss of differentiation-associated antigens
such as the pan leukocyte marker, CD45, and haematopoietic
lineage-associated antigens including class 1 and Il human
lymphocytes antigens [HLA], with the optional acquisition
of a multitude of stem cell-associated markers such as
OCT4, nestin, Gata 4 and CD34+ obtained from a single
source of unmobilised [79] donor blood. In this process, the
differentiated cells appear to develop a loose chromatin
structure, prominent nucleoli and basophilic cytoplasm prior
to acquiring new, more specific differentiated features. This
process, which has been termed retrodifferentiation, occurs in
exactly the reverse direction to differentiation of a given
stem cell and is followed by transdifferentiation into a
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variety of specific tissues consisting of a spectrum of
differentiated cell types. At various switch points in reverse
development or ontogeny, the heterogeneous population of
differentiated cells is converted into another heterogeneous
population of stem cells with variable specialisation
potentials giving rise to undifferentiated, haematopoietic,
neuronal or cardiopoietic progenitors capable of engrafting an
immunodeficient animal host [80]. As to why the
homologous sites on MHC class Il antigens [81] should
elicit such profound and rapid reprogramming of
differentiated cells is intriguing indeed. The variable site of
this major histocompatibility complex (MHC) is involved
in tissue rejection [82] and antigenic presentation [83] to T
lymphocytes. In other words the engraftment or tolerance,
respectively, of any graft, be it the product of stem cells [84]
or an organ transplant [85] is mediated by the extent of
matching between donor and recipient MHC antigens [86].
How can a compound cell surface receptor consisting of an
alpha and beta chain such as the MHC class |l antigen have
different sites implementing completely different and
apposing cellular responses; such as stem cell regeneration as
is the case with retrodifferentiation or tissue rejection and
demise following allogeneic transplant? These compart-

OCT4+ Cells

Nestin+ Cells
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mentalised signals leading to different cellular functions
such as tissue repair or rejection ought to be dissected. An
effort may well lead to the understanding of the more
complex signal transduction of the cells in response to
extant and impending environmental stimuli. Examples of
an extant environmental stimuli is the one generated during
tissue injury that leads to migration and homing of cells to
[87] remote sites while, the cross talk [88] between T-cells
and antigen presenting cells is an excellent example of a
more intimate microenvironmental stimulus. The deciphe-
ring of the relationship between these complex signal
transductions involved in cellular reprogramming or
extinction may well translate into a more comprehensible
cellular language to be harnessed to its full potential in
transplantation and regenerative medicine.

Another form of reprogramming mature adult cells into
becoming a different type of specialised cell in vitro is
known as transdifferentiation [89-94]. Though progressive
and appearing to exhibit developmental fidelity in-vitro, the
traversal of the differentiation barrier of such fully developed
cells remains unclear, and occurs in response to changes in
the biochemical surrounding of the cell. In most instances,
the differentiated cell is noted to pass through a

CD34+ Cells

CD45+ Cells

Haematopoietic colony

Fig. (1). An illustration of reprogramming commited somatic cells (Retrodifferentiation or Dedifferentiation) such as white blood
cells expressing the pan leukocyte marker CD45 (green stain) into a variety of stem cells classes expressing either CD34 antigen (red
stain) with the nuclear dye Hoechst, showing Hoechst influx positive or negative cells (blue stain). Further step- wise reversion of
leucocytes leads to the production of nestin (green dye) or OCT-4 (green dye) positive cells, respectively, superimposed on a red
background staining of nuclei with Propidium lodide. At these various switch points in reverse development the newly formed CD34
or Nestin positive cells regain the ability to re-differentiate into either pluripotent haematopoietic cells colony or neurofilament
positive cell, respectively. The traversal of the differentiation barrier from being CD45 positive into neurofilament positive cells

depicts Transdifferentiation.
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dedifferentiated state without accounting for whether the
differentiated cell has transited a stem cell state to enable the
specialised cell to defect into another lineage. The major
difference between this phenomenon and retrodifferentiation
is that the latter process achieves developmental plasticity in
vitro via intermediary hierarchical stem cell states, with far
more flexible transdifferentiation potentials (Fig. 1).

Nevertheless, switching of somatic cell developmental
allegiance is profoundly beneficial in controlling excessive
or diminished tissue regeneration in-vivo without involving
a controversial or rather cumbersome in-vitro step such as
therapeutic cloning. For example, in order to eradicate
leukaemic cells, one can convert such malignant, and more
often genetically mutant, clones [95] into enucleated red
blood cells that can be easily removed less invasively from
an ailing body via simple veni-puncture. In autoimmune
disease, the excessive regeneration of an autoaggressive
immune response [96] can be curtailed by means of
transdifferentiating somatic cells into more naive cells [97]
capable of taming any auto-aggressive assault on cells,
tissues and organs. Even in the absence of engraftment, stem
cells have been shown to impart a protective effect by
nursing degenerate neuronal tissue through secreting
biochemicals, such as glial cell derived neurotrophic factor
(GDNF) which may ameliorate or halt disorders such as
motor neuron and Parkinson’s diseases [98]. In type |
diabetes, which is caused by the demise of insulin-producing
cells, one can drive the developmental process of another
differentiated cell within the vicinity of the pancreas to
transdifferentiate intoislet cells capable of resuming insulin
synthesis [99]. Theoretically speaking, examples of repro-
gramming fully intact commited cells into another lineage in
order to correct, or impact cell deficit or proliferation,
respectively are endless. The multitude of developmental
trajectories by which one can send signals towards driving a
specific developmental program of a given tissue or somatic
cell into another more useful destiny will transfer
regenerative medicine into the healing buttons of a receptor
ligand interaction and promote mending of tissues with
utmost precession and fidelity. On the other hand, rewinding
somatic cell ontogeny to a more immature stage within a
specific lineage should silence adult genes and allow re-
expression of an alternative fetal form of a given gene. For
example, the upregulation of functional foetal haemoglobin
[100] or utrophin instead [101] of the dysfunct adult
haemoglobin or dystrophin in genetic disorders such as beta
thalassemia and muscular dystrophy, respectively, (due to
reversion of nucleated erythroid or skeletal muscle cells to a
more immature stage in their respective ontogeny), may
induce amelioration of the clinical sequel associated with
such devastating congenital disorders.

However, the implementation of such wonderful
technologies will be heavily dependent on the understanding
of the forward journeys of embryonic, as well as tissue-
specific, stem cells - most of which are not readily accessible
or well characterised as cells of the haematopoietic system.
Finally, the combination of reprogramming technologies and
easy access of this fluid tissue using standard cell separation
[102], harvesting [103] and washing [104] devices will
undoubtedly render regenerative and transplantation medicine
alike amenable to automation and the construction of novel
robotic designs replacing the human donor.
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